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Exact one-dimensional solutions to the equations of fluid dynamics are derived in the
Pr → ∞ and Pr → 0 limits (where Pr is the Prandtl number). The solutions are analo-
gous to the Pr = 3/4 solution discovered by Becker and analytically capture the profile
of shock fronts in ideal gases. The solutions consist of implicit expressions for the fluid
variables and can incorporate a temperature- and density-dependent viscosity or ther-
mal conductivity. The large-Pr solution is very similar to the Becker solution, differing
only by a scale factor. The small-Pr solution is qualitatively different, with an embedded
isothermal shock occurring above a critical Mach number, analogous to the embedded
discontinuity that occurs in radiative shocks. In fact, for a conductivity that varies as the
cube of the temperature, the small-Pr solution yields analytical expressions for the fluid
variables in the low-energy density, constant opacity, grey equilibrium diffusion limit of
radiation hydrodynamics. Analytical solutions are also derived for a viscosity and con-
ductivity with a general power-law temperature and density dependence. The maximum
error in the analytical solutions when compared to a numerical integration of the finite-Pr

equations is O
(

Pr−1
)

as Pr → ∞ and O(Pr ) as Pr → 0.

Key words:

1. Introduction

Although the power of numerical techniques makes them indispensable for solving the
equations of fluid dynamics, analytical solutions, while often difficult to find, remain
useful for several reasons. They build physical intuition, they can be quickly evaluated
over a wide dynamic range, and they can be used to verify numerical algorithms. One such
solution was discovered by Becker (1922, see also Morduchow & Libby 1949; Zel’dovich
& Raizer 2002) under the assumptions of a steady-state, one planar dimension, constant
viscosity, and a fluid Prandtl number of 3/4. It gives implicit, closed-form expressions for
the fluid variables and analytically captures the behavior of shocks in ideal gases with
Pr = 3/4. It is shown here that analogous solutions can be derived in both the Pr → ∞
and Pr → 0 limits, and that the solutions in all three limits can be extended to non-
constant viscosity or thermal conductivity. These solutions yield analytical profiles of
shock fronts in ideal gases over a wide range of parameter space. The basic equations are
outlined in §2, §3 gives the derivation of the solutions, and §4 discusses some implications.

† Email address for correspondence: johnson359@llnl.gov
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2. Basic equations

For a fluid with mass density ρ, velocity magnitude v, pressure p, internal energy e,
temperature T , viscosity µ and thermal conductivity κ (Pr = µCp/κ, where Cp is the
specific heat at constant pressure), the equations of fluid dynamics in planar geometry
are:

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (2.1)

∂

∂t
(ρv) +

∂

∂x

(

ρv2 + p − 4µ

3

∂v

∂x

)

= 0, (2.2)

∂

∂t

(

1

2
ρv2 + ρe

)

+
∂

∂x

(

ρv

[

1

2
v2 + h

]

− 4µ

3
v
∂v

∂x
− κ

∂T

∂x

)

= 0, (2.3)

where h = p + ρe is the fluid enthalpy (Landau & Lifshitz 1987). It will be assumed
throughout that the fluid obeys an ideal gas equation of state:

p = (γ − 1) ρe,

so that h = γe = CpT with Cp = γCv, where Cv is the specific heat at constant volume.
Under this assumption and the assumption of a steady-state, equations 2.1–2.3 can be
integrated once to give:

ρv = ρ0v0 ≡ m0, (2.4)

v2 +
γ − 1

γ
h − 4µ

3m0

v
dv

dx
=

(

v2
0 +

γ − 1

γ
h0

)

ρ0

ρ
, (2.5)

1

2
v2 + h − 4µ

3ρ

dv

dx
− κ

ρvCp

dh

dx
=

(

1

2
v2
0 + h0

)

ρ0v0

ρv
, (2.6)

where the zero-slope boundary conditions appropriate for a shock have been chosen at
x = ±∞. A subscript “0” here denotes a fluid quantity in the ambient (pre-shock) state.
These equations can be combined into two ordinary differential equations governing the
spatial profile of the shock front:

4µ

3m0

v
dv

dx
= v2 +

γ − 1

γ
h − γ + 1

2γ
(v0 + v1) v, (2.7)

κ

m0Cp

dh

dx
=

h

γ
−

v2

2
+

γ + 1

2γ
(v0 + v1) v −

γ + 1

γ − 1

v0v1

2
, (2.8)

where the integration constants have been expressed in terms of both pre-shock and post-
shock (denoted by a subscript “1”) velocities via the Rankine-Hugoniot jump conditions.
Here

v1 = v0

γ − 1 + 2/M2
0

γ + 1
, (2.9)

where M2
0 = v2

0/c2
0 is the shock Mach number and c0 =

√

γp0/ρ0 is the adiabatic sound
speed in the ambient fluid (Landau & Lifshitz 1987).

3. Solutions

The derivation of the Becker (1922) solution is outlined in §3.1, followed by a derivation
of the Pr → ∞ and Pr → 0 solutions in §3.2 and §3.3, respectively. These are all derived
for constant viscosity and conductivity; §3.4 shows how the solutions can be extended
to non-constant viscosity and conductivity, using the grey equilibrium diffusion limit of
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radiation hydrodynamics as an example. General expressions for the shock profiles in all
three Pr limits under the assumption of a viscosity and conductivity that vary as powers
of the density and temperature are derived in §3.5.

3.1. Becker (Pr = 3/4) solution

Becker (1922) noticed that for Pr = 3/4 equation 2.6 for the energy flux,

v2

2
+ h −

κ

m0Cp

d

dx

(

v2

2
+ h

)

=
v2
0

2
+ h0, (3.1)

is linear and has the finite solution

v2

2
+ h =

v2
0

2
+ h0 =

γ + 1

γ − 1

v0v1

2
, (3.2)

where the second equality follows from the Rankine-Hugoniot conditions. Solving this
equation for h and inserting it into equation 2.5 for the momentum flux leads to

vLκ

dv

dx
=

γ + 1

2
(v − v0) (v − v1) , (3.3)

where

Lκ ≡ κ0

m0Cv

and κ = κ0 is assumed here to be spatially constant. Equation 3.3 can be rewritten as
an integral over the velocity,

x =
2Lκ

γ + 1

∫

v

(v − v0) (v − v1)
dv.

To within an arbitrary constant, this integral is given by

x =
2Lκ

γ + 1
ln

[

(v0 − v)
v0

v0−v1 (v − v1)
−

v1

v0−v1

]

. (3.4)

Physical notation has been retained here as an aid to intuition; notice that x = ±∞
at v = v1 and v = v0, respectively. Defining the origin at the adiabatic sonic point
(

v =
√

v0v1

)

and using η ≡ v/v0 rather than v yields the expression given in Zel’dovich
& Raizer (2002). From 3.2, the temperature in this limit is given by

T

T0

=
γ − 1

2
M2

0

(

R∞η1 − η2
)

, (3.5)

where

R∞ ≡
γ + 1

γ − 1

is the maximum compression ratio. Having an expression for the temperature in terms
of η will be useful in §3.5.

Figure 1 shows the velocity and temperature for this solution, using expressions 3.4
and 3.5. For comparison, results from a numerical integration of equations 2.7 and 2.8 are
shown in figure 1 as well. The numerical results here and in the following sections were
obtained via a shooting method using the odeint differential equation solver in scipy.
An important practical note here is that it is necessary to shoot from the post-shock state
in order to obtain the desired solution. Equation 3.1 admits an exponential solution in
addition to the constant solution (the right-hand side of equation 3.2), representing an
additional energy flux at the boundary of arbitrary magnitude (Zel’dovich & Raizer
2002). For an integration from the pre- to post-shock state, this solution is exponentially
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Figure 1. Velocity (left) and temperature (right) for the Becker solution (Pr = 3/4) with
M0 = 3. Solid lines are analytical results, dotted lines are numerical results.

growing, bounded only by the end point of the integration, and can quickly dominate the
numerical results. For an integration from the post- to pre-shock state, the exponential
solution is decaying and therefore unproblematic.

3.2. Large-Pr solution

In the limit Pr → ∞ (κ → 0), equations 2.5 and 2.6 become

v2 +
γ − 1

γ
h − 4µ

3m0

v
dv

dx
=

γ + 1

2γ
(v0 + v1) v, (3.6)

1

2
v2 + h − 4µ

3m0

v
dv

dx
=

γ + 1

γ − 1

v0v1

2
, (3.7)

which can be combined to give

vLµ

dv

dx
=

γ + 1

2
(v − v0) (v − v1) , (3.8)

where

Lµ ≡ 4µ0

3m0

=
4Pr

3γ
Lκ

and µ = µ0 is assumed here to be spatially constant. This can again be expressed as an
integral over velocity,

x =
2Lµ

γ + 1

∫

v

(v − v0) (v − v1)
dv,

with the solution given by

x =
2Lµ

γ + 1
ln

[

(v0 − v)
v0

v0−v1 (v − v1)
−

v1

v0−v1

]

. (3.9)

Comparing expression 3.9 with 3.4, it can be seen that the velocity profile in the large-
Pr solution differs from that of the Becker (1922) solution only by the scale factor
Lµ/Lκ = 4Pr/(3γ). The difference between the temperature profiles is more complicated,
since solving equations 3.6 and 3.7 for the temperature in this limit yields an expression
that differs from expression 3.5:

T

T0

=
γ (γ − 1)

2
M2

0

(

η2 − 4ηiη + R∞η1

)

, (3.10)
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Figure 2. Velocity (left) and temperature (right) for the Pr → ∞ solution with M0 = 3 and
constant viscosity. Solid lines are analytical results, dotted lines are numerical results.

where

ηi ≡
γ + 1

4γ
(1 + η1) . (3.11)

Figure 2 shows the velocity and temperature for the large-Pr solution with M0 = 3 and
constant viscosity. A value of Pr = 103 was used to generate the numerical results in this
figure.

3.3. Small-Pr solution

In the limit Pr → 0 (µ → 0), equations 2.5 and 2.6 become

v2 +
γ − 1

γ
h =

γ + 1

2γ
(v0 + v1) v, (3.12)

v2

2
+ h − κ

m0Cp

dh

dx
=

γ + 1

γ − 1

v0v1

2
. (3.13)

Taking the spatial derivative of 3.12 and eliminating the enthalpy derivative via 3.13 and
the enthalpy via 3.12 gives

2 (v − vi)Lκ

dv

dx
=

γ + 1

2
(v − v0) (v − v1) , (3.14)

where

vi = v0ηi

is the velocity at the isothermal sonic point, v = ci =
√

p/ρ (vi is the isothermal sonic
point only for the small-Pr solution). Notice that unlike equations 3.3 and 3.8, equation
3.14 is singular at v = vi. Expressed as an integral over the velocity,

x =
4Lκ

γ + 1

∫

v − vi

(v − v0) (v − v1)
dv,

a full solution can be obtained for x(v) (valid to within an arbitrary constant):

x =
4Lκ

γ (γ + 1)
ln

[

(v0 − v)
βv0−v1

v0−v1 (v − v1)
v0−βv1

v0−v1

]

, (3.15)
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where

β ≡ 3γ − 1

γ + 1
.

From 3.12, the temperature in this limit is given by

T

T0

= γM2
0 η (2ηi − η) . (3.16)

Despite appearances, the singularity in equation 3.14 has not been avoided. It is clear
from 3.14 that dx/dv = 0 at v = vi, and it is straightforward to show that x is a maximum
here for v1 < vi < v0 (i.e., if the singularity lies within the shock region). The solution
3.15 is thus double-valued when regarded as a solution for v(x). Since 3.15 remains valid
under the transformation x → −x, v → −v, a solution for v(x) can be patched together
by spatially reversing the portion of the solution with v < vi. The resulting solution
is continuous and exhibits a temperature spike in a manner analagous to the Zel’dovich
spike that occurs in radiative shocks (Zel’dovich & Raizer 2002; Mihalas & Mihalas 1984).
However, the solution suffers from an infinite velocity derivative at v = vi, indicating that
viscosity must be important in this region. Numerical integration of equations 2.7 and 2.8
shows that the regularization due to viscosity results in an embedded isothermal shock,
with the velocity dropping rapidly to v1 as soon as the precursor temperature reaches
T1. This occurs for

T1

T0

= γM2
0 η (2ηi − η) = γM2

0 η1 (2ηi − η1) . (3.17)

Equation 3.17 can be rewritten as (η − η1) (η − 2ηi + η1) = 0, indicating that T = T1 at
both v = v1 and

v = 2vi − v1.

If the singularity lies within the shock region (vi > v1), the small-Pr solution is given by
expression 3.15 for 2vi − v1 < v < v0, followed by an isothermal shock from v = 2vi − v1

to v = v1. For vi < v1, or

M0 <

√

3γ − 1

γ (3 − γ)
, (3.18)

the solution is continuous and given by expression 3.15 throughout the shock region.
Figure 3 shows the velocity and temperature for the small-Pr solution with M0 = 3 and
constant conductivity. A value of Pr = 10−3 was used to generate the numerical results
in this figure. The solution is discontinuous in this case.

3.4. Grey equilibrium diffusion

The character of the solutions described in the previous section is reminiscent of radia-
tive shock solutions in the grey equilibrium diffusion limit (Lowrie & Rauenzahn 2007,
and references therein). For a constant opacity, diffusive radiation behaves as a thermal
conductivity with a T 3 dependence:

κ =
16T 3σ

3χ
,

where σ is the Stefan-Boltzmann constant and χ is the opacity in units of inverse length.
Equation 3.14 in that case can be expressed as

x =
4Lκ

γ + 1

∫
(

T

T0

)3
v − vi

(v − v0) (v − v1)
dv,
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Figure 3. Velocity (left) and temperature (right) for the Pr → 0 solution with M0 = 3 and
constant conductivity. Solid lines are analytical results, dotted lines are numerical results.

with κ0 = 16T 3
0 σ/(3χ). Using equation 3.16, this can be rewritten as

x =
4Lκγ3M6

0

γ + 1

∫

η3 (2ηi − η)
3
(η − ηi)

(η − 1) (η − η1)
dη. (3.19)

The integrand in the above expression can be expanded into

η3 (2ηi − η)
3
(η − ηi)

(η − 1) (η − η1)
=

η6 + c1η
5 + c2η

3

η − 1
+

−2η6 + c3η
5 + c4η

3

η − η1

,

where

c1 ≡ 7ηi + η1 − 2 − 18η2
i

1 − η1

, c2 ≡ 4η3
i (2ηi − 5)

η1 − 1
,

c3 ≡ −7ηiη1 − η2
1 + 2η1 + 18η2

i

1 − η1

, c4 ≡ 4η3
i (5η1 − 2ηi)

η1 − 1
.

Using the result (for integer m)

∫

zn

z − c
dz = cn ln (z − c) +

n
∑

m=1

cn−m zm

m
,

the integral in expression 3.19 is given by
∫

η3 (2ηi − η)3 (η − ηi)

(1 − η) (η − η1)
dη = ln (1 − η)α1 + ln (η − η1)

−α2

+

6
∑

m=1

(

1 − 2η6−m
1

) ηm

m
+

5
∑

m=1

(

c1 + c3η
5−m
1

) ηm

m
+

3
∑

m=1

(

c2 + c4η
3−m
1

) ηm

m
, (3.20)

where

α1 ≡ (ηi − 1) (2ηi − 1)
3

η1 − 1
, α2 ≡ η3

1 (ηi − η1) (2ηi − η1)
3

η1 − 1
.

Combining this result with expression 3.19 gives a closed form expression for x(v). An
alternative expression in terms of transcendental functions is given in §3.5; the above
expression, albeit complicated, is straightforward to implement numerically in terms of
elementary functions.
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Figure 4. Velocity (left) and temperature (right) for the Pr → 0 solution with M0 = 10 and
κ ∼ T 3. Solid lines are analytical results, dotted lines are numerical results.

Figure 5. Velocity (left) and temperature (right) for the Pr → 0 solution with M0 = 1.2 and
κ ∼ T 3. Solid lines are analytical results, dotted lines are numerical results.

Figures 4 and 5 show the velocity and temperature for the solution described in this
section with M0 = 10 and M0 = 1.2, respectively. A value of Pr = 10−4 was used to
generate the numerical results in these figures. Compare with figures 3 and 5 of Lowrie
& Rauenzahn (2007). Notice that ηi → 1/2 as M0 → ∞ (from 2.9 and 3.11), so that
α1 → 0 and the ln (1 − η) term in 3.20 is negligible at large Mach number. This accounts
for the slope discontinuity at the leading edge of the precursor in figure 4.

3.5. Power-law viscosity and conductivity

For a viscosity and thermal conductivity that vary as a power-law in density and tem-
perature,

µ = µ0

(

ρ

ρ0

)a (

T

T0

)b

, κ = κ0

(

ρ

ρ0

)a (

T

T0

)b

,

the solutions to equations 3.3, 3.8 and 3.14 are

x (Pr = 3/4) =
2Lκ

γ + 1

(

[γ − 1]M2
0

2

)b ∫

η1−a
(

R∞η1 − η2
)b

(η − 1) (η − η1)
dη, (3.21)
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x (Pr = ∞) =
2Lµ

γ + 1

(

γ [γ − 1]M2
0

2

)b ∫

η1−a
(

η2 − 4ηiη + R∞η1

)b

(η − 1) (η − η1)
dη, (3.22)

x (Pr = 0) =
4Lκ

γ + 1

(

γM2
0

)b
∫

(η − ηi) ηb−a (2ηi − η)b

(η − 1) (η − η1)
dη, (3.23)

where expressions 3.5, 3.10 and 3.16, respectively, have been used for T/T0. The problem
has thus been reduced to quadrature under quite general conditions. Expression 3.23,
along with expressions 3.21 and 3.22 for particular values of a and b, can be expressed
in terms of Appell functions, although these can be slow to evaluate numerically. For
example, the small-Pr solution for general a and b is

x (Pr = 0) =
4Lκ

(

2γM2
0

)b
v0

(γ + 1) (b − a + 1) (v0 − v1)

(

vi

v0

)b (

v

v0

)b−a+1

×
([

vi

v0

− 1

]

F1

[

b − a + 1;−a, 1; b − a + 2;
v

2vi

,
v

v0

]

+

[

1 −
vi

v1

]

F1

[

b − a + 1;−a, 1; b− a + 2;
v

2vi

,
v

v1

])

, (3.24)

where F1 is the Appell function of the first kind. Analytical expressions in terms of
elementary functions can be obtained for particular values of a and b (the solution in
§3.4 is an example with a = 0, b = 3), although they can be quite lengthy. The expression
for a Spitzer conductivity (a = 0, b = 5/2), for example, is even longer than expression
3.20 and is not reproduced here. The best approach for general a and b is to perform the
quadratures in 3.21–3.23 numerically. Notice that µ and κ have been assumed to have
the same temperature and density dependence so that Pr is constant, for simplicity; this
assumption is not necessary and is easily relaxed.

4. Discussion

Exact solutions to the equations of fluid dynamics have been derived in the Pr → ∞
and Pr → 0 limits, analogous to the Pr → 3/4 solution derived by Becker (1922). For
finite Pr , the solutions are accurate to within Pr−1 for Pr → ∞ and Pr for Pr →
0 (see figure 6). The solutions have been shown to extend to non-constant viscosity
and conductivity, in particular for a power-law dependence in temperature and density,
although further extensions not elaborated here are possible (such as for a Sutherland
viscosity). The derived solutions are given in their most general form by expressions 3.21–
3.23, with specific forms for a constant viscosity and conductivity given by expressions
3.4, 3.9 and 3.15. An alternative form of 3.23 is given by expression 3.24.

A small-Pr solution with a T 3 dependence has also been derived (expressions 3.19 and
3.20) that is equivalent to the semi-analytical solutions of Lowrie & Rauenzahn (2007)
for grey equilibrium diffusion in the low-energy density limit (in the notation of Lowrie
& Rauenzahn 2007, this is the P0 → 0 limit, where P0 is approximately the ratio of
radiation to material pressures). Since the equilibrium solution for radiative shocks is
in many cases a good approximation to the more physically-relevant non-equilibrium
solution (i.e., where the radiation and material temperatures are out of equilibrium, see
Lowrie & Edwards 2008), expressions 3.19 and 3.23 provide a good estimate of the width
of radiative shocks, the former for the constant opacity case, and the latter for non-
constant opacity (in that case, simply make the substitution a = −a′ − 1 and b = 3− b′,
where a′ and b′ are the density and temperature power-laws, respectively, for the opacity
expressed in units of area per mass). Notice that the width of a radiative shock precursor
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Figure 6. Temperature errors in the large-Pr (left) and small-Pr (right) solutions with constant
viscosity and conductivity (figures 2 and 3), for (from top to bottom) Pr = 10, 100, 1000 (left)
and Pr = 0.1, 0.01, 0.001 (right).

can be quite sensitive to the shock Mach number (x ∼ M6
0 in the case of a constant

opacity).
In addition to providing physical insight, the analytical solutions derived here are

useful for quickly evaluating shock profiles over a wide range of parameter space. It is
possible to comprehend at a glance the scaling of the solutions with various parameters
without resorting to a comprehensive parameter survey via numerical integration. The
solutions are also nonlinear, with the only assumptions behind their derivation being a
steady-state, one planar dimension, and an ideal gas equation of state. In particular, no
terms in the evolution equations have been approximated, which makes these solutions
an excellent verification test for numerical algorithms.

Many of the integrals in this work were originally obtained with Mathematica. This
work was performed under the auspices of Lawrence Livermore National Security, LLC,
(LLNS) under Contract No. DE-AC52-07NA27344.
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